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SUMMARY

Human brain networks that encode variation inmood
on naturalistic timescales remain largely unexplored.
Here we combine multi-site, semi-chronic, intracra-
nial electroencephalography recordings from the
human limbic systemwithmachine learningmethods
to discover a brain subnetwork that correlates with
variation in individual subjects’ self-reported mood
over days. First we defined the subnetworks that
influence intrinsic brain dynamics by identifying
regions that showed coordinated changes in spec-
tral coherence. The most common subnetwork,
found in 13 of 21 subjects, was characterized by
b-frequency coherence (13-30 Hz) between the
amygdala and hippocampus. Increased variability
of this subnetwork correlated with worsening mood
across these 13 subjects. Moreover, these subjects
had significantly higher trait anxiety than the 8 of 21
for whom this amygdala-hippocampus subnetwork
was absent. These results demonstrate an approach
for extracting network-behavior relationships from
complex datasets, and they reveal a conserved sub-
network associated with a psychological trait that
significantly influences intrinsic brain dynamics and
encodes fluctuations in mood.
INTRODUCTION

Human emotion arises from interactions between brain regions

within the limbic system, which includes the amygdala, hippo-

campus, insula, and cingulate cortex (LeDoux, 2003; Phillips

et al., 2003). Much of what is known about emotion networks

in the human brain comes from fMRI and positron emission

tomography (PET) studies, in which specific emotions are pro-
voked using controlled stimuli while neural responses are

observed non-invasively (Phan et al., 2002; Price and Drevets,

2010). These studies have shown, for example, that an insula-

cingulate salience network is associated with affective experi-

ence (Seeley et al., 2007; Touroutoglou et al., 2012) and that

intrinsic functional networks are altered in the setting of neuro-

psychiatric conditions, including depression (Greicius et al.,

2007), Alzheimer’s disease (Greicius et al., 2004), and schizo-

phrenia (Calhoun et al., 2009). Importantly, PET imaging has

identified changes in brain activity that are associated with anti-

depressant treatment response (Mayberg et al., 2000), leading to

pioneering studies that have used deep brain stimulation to

target specific structures to treat major depression (Mayberg

et al., 2005).

Although these studies have revealed fundamental insights

into the neural networks of emotion, they suffer from two major

limitations. First, non-invasive imaging is restricted to short

recording periods (1 to 2 hr) and often requires averaging across

measurements to detect effects. As a result, these experiments

cannot identify real-time neural correlates for slower changes in

emotional state, such as changes in mood, that evolve over

hours or days. Second, fMRI and PET are both indirect mea-

sures of neural activity with low temporal resolution on the order

of seconds. As such, they cannot resolve sub-second oscilla-

tory brain activity, which is thought to underlie information pro-

cessing and cognitive function (Schnitzler and Gross, 2005).

Thus, almost nothing is known about how rapid-timescale inter-

actions between limbic brain regions contribute to changes

in mood.

To address these two questions, we took advantage of a

unique dataset: multi-site, semi-chronic intracranial electroen-

cephalography (iEEG) recordings from the human limbic system,

collected over several days as participants periodically rated

their mood. These recordings were performed in patients with

epilepsy for the primary clinical purpose of seizure localization

and treatment.

Given that the amygdala is a major hub in brain networks that

support emotional processing (Phelps and LeDoux, 2005), we
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postulated that amygdala-containing subnetworks would also

underlie mood variation. Subjects in our study were thus

selected on the basis of amygdala electrode coverage in addi-

tion to three or more other limbic regions that are connected to

the amygdala (Bickart et al., 2014). These included the hippo-

campus (ventral), cingulate cortex (inferior or superior), insular

cortex, orbitofrontal cortex (anterior or posterior), and subtem-

poral cortex (anterior, middle, or posterior). However, not all sub-

jects had electrode coverage in all of these regions because this

was determined by clinical needs (Figure S1; Table S1).

Because iEEG measures neural activity directly from the

brain, these recordings offer the potential to detect fast oscilla-

tory network interactions that correlate in real time with changes

in mood. However, they also have an inherent complication:

because the number of network interactions is much greater

than the number of mood ratings from a subject, there is a

risk of detecting spurious correlations. To overcome this risk,

we first used pattern recognition techniques (unsupervised

machine learning) to define subnetworks that represent domi-

nant interactions across the brain regions defined above. We

next usedmultivariate regression (supervised machine learning)

to determine how activity within these subnetworks related

to subjects’ mood ratings. Our study identifies a conserved

subnetwork, driven by b-frequency (13–30 Hz) interactions be-

tween the amygdala (AMY) and hippocampus (HPC) that was

present in 62% (13 of 21) of study subjects. Furthermore,

when present, increased temporal variance of activity within

this AMY-HPC b-frequency subnetwork consistently predicted

worsening mood.

RESULTS

Limbic Activity Can Be Represented by ICNs
To identify limbic subnetworks, we first obtained a more trac-

table, low-dimensional data representation of our iEEG record-

ings by identifying a small number of patterns that explain the

variation in network activity over time. Specifically, we identified

intrinsic coherence networks (ICNs) that correspond to groups of

brain regions that exhibit statistically significant, correlated fluc-

tuations in rhythmic activity across recording sites (Bowyer,

2016). To identify ICNs, we first computed time series of coher-

ence between all pairs of recording sites and in four frequency

bands, which are thought to reflect distinct aspects of neural

function and cognitive processing (Schnitzler and Gross,

2005): theta (q, 4–8 Hz), alpha (a, 8–13 Hz), beta (b, 13–30 Hz),

and gamma (g, 30–70 Hz) (Figures 1A and 1B). We then per-

formed principal component analysis to reduce dimensionality

and noise, followed by independent component analysis to

derive statistically significant, independent components that

capture the variation in coherence across the network over

time (Lopes-dos-Santos et al., 2013). Each independent compo-

nent defines an ICN (Figure 1C). To visualize ICNs, we con-

structed connectivity diagrams showing pairs of electrodes

whose temporal variance exceeds a threshold (Figure 1D). On

average, we found 10 ± 4 (mean ± SD) ICNs for each subject

and frequency band, which explained 45% ± 10% (q), 47% ±

10% (a), 67% ± 8% (b), or 77% ± 7% (g) (mean ± SD) of the total

variance in coherence over time (Figure 1E).
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ICNs from Different Subjects and Frequency Bands
Cluster into Cliques
Common ICN motifs that are present in many subjects are likely

to reflect strong, biologically conserved connectivity and func-

tionality. Subjects had heterogeneous electrode placement,

driven by clinical needs for seizure localization (Figure S1; Table

S1), precluding a direct, one-to-one comparison of ICNs across

subjects. To overcome this constraint, we projected each ICN

onto a ‘‘common network template’’ (Figure S2A; STAR

Methods). We then constructed a similarity matrix based on

the Pearson correlation coefficient (CC) between all pairs of

common network-projected ICNs to determine the spatial simi-

larity between each ICN pair (Figure S2B). We visualized ICN

similarity graphically, where each node corresponds to an ICN,

and edges connect ICNs whose similarity exceeds a threshold

(CC > 0.55; Figure S2B). To identify the most common ICN

motifs, we considered the subgraph composed only of ‘‘core

nodes’’ that were connected to at least 7 other nodes; this

step corresponded to excluding idiosyncratic ICNs and retained

37% of all ICNs (Figure S3A). These thresholds therefore winn-

owed the number of connections to yield a sparse graph that

is suitable for analysis. The resulting topological graph of ICNs

clustered into nine ‘‘cliques’’ (Figure 2A; Figure S3B). Impor-

tantly, we verified that this clique structure was largely preserved

using different correlation and core node thresholds that main-

tained a similar proportion (�40%) of ICNs (Figure S3C).

Conversely, shuffling the similarity matrix completely eliminated

cliques, confirming that the observed clique structure is non-

random (Figure S3D).

Individual cliques comprised ICNs from many frequency

bands and subjects (Figure 2B; Figure S3E). The most common

ICN motif was dominated by interactions between electrodes in

the AMY andHPC (clique 1) and present in 62% (13 of 21) of sub-

jects (Figure 2B). Other conserved motifs were characterized by

AMY-HPC interactions with other brain regions, including the in-

sula (cliques 2 and 3, 52% of subjects), inferior cingulate cortex

(clique 4, 48% of subjects), and subtemporal cortex (clique 5,

48% of subjects). The dominance of ICNs involving AMY and

HPC electrodes is likely introduced by uneven electrode

coverage, which favors these mesolimbic regions (Figure S1).

Nonetheless, these observations suggest that there exist com-

monmodes of functional connectivity that give rise to conserved

ICN motifs that are shared across individuals.

A Characteristic AMY-HPC Subnetwork Correlates with
Mood in a Subset of Subjects
We hypothesized that mood-related patterns of activity should

bemajor features of limbic system activity and, thus, be reflected

in ICN dynamics. To measure subjects’ subjective mood state,

we used a custom-designed questionnaire (Nahum et al.,

2017; Posit Science, Immediate Mood Scaler [IMS]). This con-

sisted of a series of self-report items (Table S2) based on and

validated against the Patient Health Questionnaire-9 (PHQ-9),

Generalized Anxiety Disorder-7 (GAD-7), and Rumination scales

(Treynor et al., 2003). The final IMS score was found by summing

individual responses to provide a single score, with higher values

corresponding to a more positive instantaneous mood (Figures

S4A and S4B). Note that, although we refer to this as a measure
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Figure 1. Limbic Activity Can Be Represented by ICNs

(A) Sagittal view of electrode locations for all subjects superimposed onto reconstructed brain in Montreal Neurological Institute (MNI) coordinate space.

Electrodes are located in six brain regions: the subtemporal cortex (STC, blue), amygdala (AMY, magenta), hippocampus (HPC, orange), orbitofrontal cortex

(OFC, purple), cingulate cortex (CIN, red), and insular cortex (INS, yellow).

(B) Top: example traces of intracranial electroencephalography (iEEG) signals collected from 4 STC electrodes. Bottom: example time series of coherence

matrices in the b-frequency band. Each row and column correspond to a different electrode. Coherence was calculated across all electrode pairs in 10-s bins.

(C) Left: two example ICNs derived from b-frequency coherence matrices. Right: binarized ICNs derived by requiring a loading either above the 98th (black) or

below the second (red) percentile.

(D) Chord representation of ICN connectivity. Each node corresponds to an electrode in the specified brain region; edges correspond to non-zero node-node

pairs in the binarized ICN.

(E) Number of ICNs (left) and percent variance explained by all ICNs (right) across frequency bands for each subject (color-coded). Error bars correspond to

mean ± SD.

a, ant: anterior; m, mid: middle; p, pos: posterior; i, inf: inferior; s, sup: superior). See also Figure S1.
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of ‘‘mood,’’ it is more precisely a measure of ‘‘subjective well-be-

ing’’ that combines multiple aspects of mood and anxiety. This

measure contrasts with scales such as the Beck Depression

Inventory (BDI) or Beck Anxiety Inventory (BAI), which are

weighted toward longer-timescale symptoms and designed to

measure enduring trait levels of depression or anxiety rather

than moment-to-moment variations in mood state (Kabacoff

et al., 1997; Richter et al., 1998). We then used a model-based

regression analysis (described below) to determine which ICNs

correlated with variations in IMS score. This initial analysis was

limited to subjects with 10 or more IMS data points and an IMS

coefficient of variation of more than 5% because the remaining

subjects had insufficient IMS points or variation to fit a model

(6 subjects total; Table S3). The primary goal of this analysis

was not to identify individualized mood-subnetwork relation-

ships specific for each subject but, rather, to look for emergent
similarities in mood-predictive subnetworks across subjects. If

we can identify conserved mood-predictive network(s) in this

way, then we can then use cross-validation to test whether these

generalize to a broader set of subjects.

To obtain traces of ICN activity over time, we projected the

time series of coherence matrices onto each ICN. These traces

exhibited a sharply peaked temporal structure, suggestive of

mostly low coherence interspersed with transient periods of

high coherence (Figure 3A, blue traces). To capture this temporal

structure, we computed the variance of ICN activity over time.

For each individual subject, we then regressed the IMS scores

against the average temporal variance of activity in the specific

ICNs (i.e., ICNs discovered by principal component analysis

[PCA] and independent component analysis [ICA] on that sub-

jects’ dataset), using averaging windows (tave) that ranged be-

tween 5 and 30 min (in 5-min increments), centered on each
Cell 175, 1–13, November 29, 2018 3
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Figure 2. ICNs from Different Subjects and Frequency Bands Cluster into Cliques
(A) Left: graphical representation of ICNs that are most highly conserved across subjects. Each node corresponds to an ICN from a single subject in a single

frequency band. ICN pairs that show a similar spatial connectivity pattern of brain regions are connected by an edge. Represented here are core ICNs that are

connected to at least 7 other ICNs and, thus, represent spatial connectivity patterns that are most highly conserved across individuals. Color-coded clusters

correspond to cliques; i.e., sets of at least 5 ICNs that are all connected to one another. ICNs highlighted with thick borders and a black dot in the node center in

clique 1 correspond to ICNs with the highest coefficient for each subject from the elastic net linear model (Figure 3). Right: chord diagrams of average spatial

connectivity patterns of all ICNs represented in a given clique (as in Figure 1D).

(B) Number of unique subjects per frequency band found in each clique.

See also Figures S2 and S3.
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IMS time point (tIMS). To mitigate the possibility of overfitting, we

used an elastic net linear model (Zou and Hastie, 2005). This

models IMS score based on a weighted sum of ICN variances

and promotes sparsity by adding a penalty based on the sum

of the weights, forcing weights for ICNs that are not correlated

with IMS to zero. The best model parameters were selected for

each subject using 3-fold cross-validation.

We found that using a 20-min averaging window resulted in

all 6 subjects having a non-zero R2 regression score; therefore,

we chose this window for subsequent analysis. However, similar

results could be obtained using a range of averaging windows, in

particular for 15- and 25-min windows (Figure S4D), indicating

that the model selection was robust to this temporal parameter.

Across subjects, the average number of ICNs retained was
4 Cell 175, 1–13, November 29, 2018
3.7 ± 2.4 (mean ± SD; Figure 3B; Table S3). In contrast, for

models using mean ICN activity (rather than variance), the

average number of ICNs retained was 8.2 ± 6.3 ICNs. This sug-

gests that mean-based models are less sparse than variance-

based ones and, hence, potentially more prone to overfitting.

To further validate that we identified statistically meaningful

relationships and not spurious ones, we used the elastic net

approach to fit linear models for IMS based on randomly shuffled

time series of ICN activity (100 for each subject). For each sub-

ject, models fit to true data consistently outperformed those fit

to shuffled data from the same subject; i.e., models fit to true

data retained fewer ICNs and had higher R2 (*p < 0.005; Fig-

ure 3B). This confirms that the ability to predict the IMS score

based on ICN activity is not simply due to the number of degrees
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Figure 3. Linear ICN Model for IMS Prediction Converges on the Characteristic AMY-HPC Subnetwork across Subjects

(A) Schematic of themultivariate linearmodel used for IMS score prediction. ICN activity features (variance ormean of ICN trace) were averaged over an averaging

window, tave, centered around each IMS time point, tIMS.

(B) R2 regression score versus number of ICNs retained (number of ICNs with non-zero coefficients) for models fit to each subject using a 20-min averaging

window (blue data points). Grey data points correspond to R2 regression scores for models fit to randomly shuffled time series of ICN activity for each subject.

Error bars correspond to mean ± SEM for 100 shuffled trials for each subject. All model metrics correspond to models fit using 3-fold cross-validation.

(C) Model output for 6 subjects with greater than 10 IMS data points and an IMS coefficient of variation (CV) of more than 5%. Left: ICN coefficients from the

elastic net model using a 20-min averaging window. ICN numbers are grouped by frequency band (q, a, b, and g) and arbitrarily ranked. Right: chord diagram

representation of ICN represented by largest coefficient (absolute value) (as in Figure 1D). Electrodes in subjects with no implantation in a given brain region are

represented as hollow nodes.

See also Figure S4.
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of freedom; if it were, then models based on shuffled data would

have performed as well as those based on true data.

Although we constructed independent models for each sub-

ject, we observed a striking and highly improbable degree of
convergence. Across subjects, the single most IMS-predictive

ICN (i.e., the ICN with the highest absolute magnitude coeffi-

cient) was consistently dominated by an interaction between

electrodes located in the AMY and HPC and almost always in
Cell 175, 1–13, November 29, 2018 5
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the b-frequency band (apart from EC108, which was in the

g-band) (Figure 3C). Moreover, all of these ICNs clustered in

the same clique in ICN topological space (Figure 2A, clique 1;

nodes with thick borders represent the ICNs with highest

coefficients). We estimated the probability that the most IMS-

predictive ICN for these 6 subjects would converge in a single

cluster (clique 1), with 5 of 6 of these in the same frequency

band (b-band) to be 43 10�8 (STARMethods). This highly signif-

icant degree of convergence indicates that the multivariate

regression (performed independently for each subject) was not

identifying spurious correlations driven by multiple comparisons

(had this been the case, the ICNs identified by regression for

each subject would more likely have been randomly distributed).

Rather, the regression identified a mood-network relationship

that was conserved across subjects. We next performed addi-

tional cross-validation of this relationship by determining

whether it generalized to additional subjects who were not part

of this initial elastic net analysis.

The Temporal Variance of AMY-HPC b-Coherence
Predicts Mood across Subjects who Share the
Characteristic AMY-HPC Subnetwork
Based on the convergence noted above, we hypothesized that

activity in this characteristic ICN alone (the b-frequency ICN in

clique 1), which we refer to as the ‘‘b-AH ICN,’’ should correlate

with IMS score across subjects, not just for the 6 for whom we

fit a model. We found b-frequency AMY-HPC (b-AH) ICNs

belonging to clique 1 in 13 of 21 subjects (Figure 2B). For each

of these subjects, we regressed the IMS score against the tem-

poral variance of activity in their corresponding b-AH ICN over a

20-min window centered around each IMS time point. In every

case, we observed a negative trend between IMS score and

b-AH ICN activity (Figure 4), consistent with the negative coeffi-

cients derived from the elastic net. Importantly, we are not

claiming that this relationship was statistically significant on an

individual subject basis—this is clearly not the case because

many subjects had an insufficient number of IMS ratings to

yield a significant relationship. Rather, to definitively test for a

conserved relationship between activity in this subnetwork and

mood, we used cross-validation; i.e., we split our population

into a training set and a distinct, out-of-sample test set (Fig-

ure 5A). For each of the 13 subjects who had the b-AH ICN, we

quantified the conserved feature of this subnetwork: AMY-HPC

b-coherence. We computed the time series of AMY-HPC

b-coherence for each subject by averaging across all electrode

pairs within these two structures. Similar to the temporal struc-

ture of ICN activity, AMY-HPC b-coherence showed sharp

peaks in its temporal structure, which we again captured using

variance over time.

Our first training set comprised the 6 subjects used for the

elastic net analysis. Before pooling across subjects, we normal-

ized data on an individual subject basis by converting both IMS

and the variance of AMY-HPC b-coherence to Z score values.

For these 6 subjects, we regressed the IMS score against the

temporal variance of AMY-HPC b-coherence (computed over a

20-min window centered on each IMS time point). This revealed

a strong negative correlation between IMS and the variance of

AMY-HPC b-coherence (r2 = 0.42, **p < 10�10; Figure 5B).
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Thus, even though the elastic net framework led us to discover

a mood-related subnetwork, the neural correlate for mood is

present in less processed and more readily interpretable data

(the temporal variance of coherence between two intercon-

nected brain regions). We then tested whether the linear model

derived from these 6 subjects generalized to the broader

population by predicting IMS for the remaining subjects, from

their (Z score-normalized) variance of AMY-HPC b-coherence.

This model was strongly predictive of IMS for the 7 remaining

subjects who shared the characteristic b-AH ICN (R2 = 0.49,

**p < 10�3; Figure 5B). Interestingly, the model had no predictive

power in the 8 subjects who lacked this ICN (R2 < 0, p = 0.87; Fig-

ure 5B. Note that a negative R2 in this case indicates worse pre-

diction than a horizontal line).

Next, to demonstrate that there is nothing exceptional about

the 6 subjects we initially used for the elastic net analysis, we

used the other 7 subjects who shared the characteristic b-AH

ICN as the training set and fit a new linear model. Again, this

model predicted IMS for the out-of-sample population, now

the 6 subjects with the b-AH ICN who were used for the elastic

net analysis (R2 = 0.42, **p < 10�6; Figure S5). This was expected

based on Figure 5B and simply illustrates that we find the same

IMS-coherence relationship regardless of which set of subjects

we analyze (so long as they have the b-AH ICN). Again, this

model did not predict IMS for the 8 subjects who lack the

b-AH ICN (R2 < 0, p = 0.88; Figure S5). This form of 2-fold

cross-validation indicates that it is not simply the case that there

is a relationship between the variance of AMY-HPC b-coherence

and mood in all subjects who share the characteristic b-AH ICN.

Rather, the same quantitative relationship holds across these

individuals.

Variance of AMY-HPC b-Coherence Detects High-
Coherence Outliers
To further characterize the temporal dynamics of the relationship

between IMS and the variance of AMY-HPC b-coherence, we

pooled data across all 13 subjects who shared a b-AH ICN and

repeated our regression analysis using a range of averaging win-

dows andwindow start positions (Figure 6A). Consistent with our

elastic net findings, the correlation was strongest using a 20-min

averaging window centered on each IMS time point. However,

significant relationships were also present over a range of

averaging windows and start positions, demonstrating that this

relationship is robust for a range of temporal parameters (Fig-

ure 6B). Moreover, although we found that this correlation was

strongest for b-frequency activity, a similar but slightly weaker

one was also present for g-frequency activity (Figure S6A).

We next tested whether mean AMY-HPC b-coherence corre-

latedwith IMS score (Figure 6C). Mean coherence also showed a

negative trend with IMS, but the associated p value was 108-fold

weaker than for coherence variance. To understand how coher-

ence values mapped onto coherence variance, we plotted

cumulative distributions of coherence values corresponding to

periods when the variance was above (‘‘high variance’’) or below

(‘‘low variance’’) its median value. The tails of these two distribu-

tions were markedly different. By contrast, their means showed

a less dramatic difference (Figure 6D). This confirms the intuition

that variance should be more sensitive to high-coherence
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See also Figure S5.
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outliers than the mean. We postulate that this increased sensi-

tivity to high-coherence outliers drives the strong correlation

we observed between the temporal variance of AMY-HPC

b-coherence and IMS score. Moreover, the IMS score showed

only a weak or no correlation with b-coherence or b-power within

either the AMY or HPC alone (Figures S6B and S6C), suggesting

that mood is encoded by AMY-HPC interactions rather than

either individual region.

Epileptiform Activity in the AMY and HPC Does Not
Correlate with Mood
The AMY and HPC are common epileptogenic regions. To con-

trol for potential effects of epileptiform activity on mood, we first

detected AMY and HPC interictal discharges (transient spikes
8 Cell 175, 1–13, November 29, 2018
in the raw voltage time series) around each IMS time point using

a peak detection algorithm (Meliza and Margoliash, 2012; Fig-

ure S7A). The AMY discharge rate was only weakly correlated

with IMS score or the temporal variance of AMY-HPC b-coher-

ence (r2 = 0.04; Figures S7B and S7C, left) but wasmore strongly

correlated with mean AMY-HPC b-coherence (r2 = 0.19; Fig-

ure S7D). However, the negative relationship between IMS score

and AMY-HPC b-coherence remained even after we controlled

for effects of the AMY discharge rate in our regression analysis

(Figure S7E). The HPC discharge rate was not correlated with

IMS score or variance of coherence and only weakly correlated

with mean coherence (Figures S7B–S7D, right). As an additional

control, we examined the relationship between anticonvulsant

medication and mood for three subjects with the strongest
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Figure 6. Variance of AMY-HPC b-Coherence Detects High-Coherence Outliers

(A) Regression of IMS score against variance of AMY-HPC b-coherence over a 20-min averaging window centered around each IMS score time point and Z score

normalized within each subject for 13 of 21 subjects with b-AH ICN. The gray confidence interval represents 95% confidence on the regression estimate.

(B) Right: schematic of AMY-HPC coherence calculated in 10-s contiguous bins (black) and coherence variance calculated over a 60-s sliding interval (red). For

an IMS score recorded at time tIMS, the mean variance was calculated over an averaging window, tave, at a time Dt from tIMS. Left: heatmap showing regression

p values for a range of values of tave and Dt for subjects with b-AH ICN. The regression plot in (A) corresponds to tave = 20 min and Dt = �10 min.

(C) Left: regression of IMS score against mean AMY-HPC b-coherence over a 20-min averaging window centered around each IMS score time point and Z score

normalized within each subject for 13 of 21 subjects with b-AH ICN. The gray confidence interval represents 95% confidence on the regression estimate.

Right: heatmap of regression p values across a range of averaging windows, tave, and start times from each IMS data point, Dt (as in B). The regression plot on

the left corresponds to tave = 20 min and Dt = �10 min.

(D) Cumulative probability density distribution of coherence values for variance epochs below the median (low variance, black) versus above the median (high

variance, red). Dashed lines and confidence intervals correspond to mean and SD of each distribution. Inset: example distribution of coherence values in low or

high variance states for a single subject.

See also Figures S6 and S7.
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IMS correlation: EC79, EC82, and EC108 (Figure S7F). Although

changes in mood appeared to coincide with changes in anticon-

vulsant dosing for one subject (EC79), this was not the case

for the other two: both increases and decreases in mood

occurred after anticonvulsants had been discontinued for one

subject (EC82) and while the other (EC108) was on a constant

dose. These observations illustrate that the mood variation

we observed was not solely due to the starting or stopping of

anticonvulsants.

Subjects who Share the Characteristic AMY-HPC ICN
Have Higher Trait Anxiety than Those who Lack It
Why do only �60% of subjects have the mood-predictive b-AH

ICN? We did not find any difference in AMY or HPC electrode

placement between subjects who do or do not have this ICN
(Figure S1B). Therefore, we tested whether differences in psy-

chological traits might predict which subjects have this subnet-

work. Although subjects used IMS to rate their current sense of

well-being during their hospitalization, concurrent with iEEG

data collection, they also filled out two questionnaires related

to psychological traits during a pre-op visit 4.5 ± 2.5 months

(mean ± SD) before their hospital stay: BDI and BAI, which are

designed to measure enduring trait levels of depression or anx-

iety, respectively (Kabacoff et al., 1997; Richter et al., 1998).

Intriguingly, subjects with the conserved b-AH ICN had signifi-

cantly higher BAI scores on average than subjects who lacked

it (Figure 7). In particular, we found that the majority of subjects

who had this subnetwork were at or near the ‘‘moderate to se-

vere’’ range of the BAI, whereas all those who lacked it were all

in the ‘‘minimal’’ range (*p < 0.02). BDI scores also trended lower
Cell 175, 1–13, November 29, 2018 9



all participants with β-AH ICN

mild

moderate

severe

minimal

S
co

re

20

10

0
BDI

(depression)
BAI

(anxiety)

30

40

*
participants without β-AH ICN

Figure 7. Trait Anxiety Differences Separate Subjects with and

without an b-AH Network

Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) scores for

subjects with (black) and without (red) b-AH ICN (*p < 0.02, two-sided t test).

Please cite this article in press as: Kirkby et al., An Amygdala-Hippocampus Subnetwork that Encodes Variation in Human Mood, Cell (2018),
https://doi.org/10.1016/j.cell.2018.10.005
in subjects who lacked a b-AH ICN, but this difference was not

significant (Figure 7). Importantly, neither BAI nor BDI showed

a relationship with a subject’s mean IMS, demonstrating a disso-

ciation between these two ‘‘trait’’ measures and our IMS-based

measure of ‘‘mood state’’ (Figure S4).

DISCUSSION

Our study identifies a characteristic AMY-HPC subnetwork

related to mood variation over time. Specifically, within this sub-

network, increased temporal variance of AMY-HPC b-coherence

correlates with worsening mood. This subnetwork is present in

62% (13 of 21) of study subjects, including all subjects with

significant trait anxiety. Conversely, all subjects in whom this

subnetwork is absent have minimal trait anxiety. The direction

of causality for the last observation remains unclear. Specifically,

the absence of this subnetwork may render certain individuals

resilient to anxiety, leaving other factors to drive variation in their

mood. Alternatively, this subnetwork may be present in those

individuals, but their low anxiety may cause it to be fixed in a

quiescent state, again leaving other factors to drive changes in

their mood. It will be important for future studies to determine

the direction of causality between network activity and mood;

for example, by perturbing either the temporal variance of coher-

ence between AMY and HPC or mood state.

Extracting Network-Behavior Relationships from High-
Dimensional Datasets
Simply regressing a high-dimensional dataset against a behav-

ioral measure runs the risk of detecting spurious correlations.

We directly addressed this risk in three ways. First, we reduced

the dimensionality of our datasets by identifying ICNs—tempo-

rally coordinated patterns of spectral coherence—and found

those that were shared across subjects. Second, for each of

the 6 subjects with the most IMS points, we used an elastic

net to predict their IMS score from a sparse subset of ICNs to
10 Cell 175, 1–13, November 29, 2018
mitigate the possibility of overfitting. Third, we looked for conver-

gence across subjects. Although there is no a priori reason why

the most mood-predictive ICNs should be similar across

different subjects, we found that these clustered into the same

ICN clique and frequency band—a degree of convergence highly

unlikely to occur by chance (p < 10�7). Moreover, using 2-fold

cross-validation, we found that the quantitative relationship

derived from one set of subjects (e.g., the 6 subjects used for

the elastic net analysis) predicted 40%–50% of the variation in

mood for a distinct, out-of-sample set of subjects (e.g., the other

7 subjects who also possessed the b-AH network).

This convergence validates the robustness of our findings and

raises the question of whether specific aspects of our approach

facilitated the discovery of this conserved, mood-related AMY-

HPC subnetwork. Indeed, many studies have identified intrinsic

brain networks, such as the default mode (Greicius et al., 2003;

Raichle et al., 2001), central executive (Fox et al., 2006), and

salience (Seeley et al., 2007) networks, within fMRI or PET data

by searching for regions whose activity co-varied with that of

other regions to define networks. Importantly, identification of

these networks required that the average correlation between

activity in the different regions was high. In contrast, our

approach of performing ICA on the time series of coherence

matrices identified brain regions connected by coherent interac-

tions that are not consistently strong but, rather, tended to

fluctuate in concert with coherent interactions between other

regions. This is a key difference because interactions with a

wide dynamic range may be better suited to uncover variation

in equally dynamic behavioral measures such as mood. This

concept is closely related to the recently proposed ‘‘chronnec-

tome’’ for identifying re-occurring, time-varying connectivity net-

works from fMRI data (Calhoun et al., 2014).

Additional patterns of brain activity that encode subjective

mood are likely to emerge from future studies that examine com-

plementary iEEG activity features; for example, power features

within single brain regions. Moreover, these granular types of

features may identify idiosyncratic or subject-specific neural sig-

natures for mood, in contrast to the more composite and domi-

nant network-level features described here, which are likely to be

better suited for identifying neural signatures for mood that are

shared across individuals.

AMY-HPC in Mediating Mood Variability
AMY and HPC share strong anatomical connections, and both

regions have been implicated in multiple aspects of emotion

(Felix-Ortiz et al., 2013; Fournier and Duman, 2013; Zheng

et al., 2017). In particular, it is thought that interactions between

these two regions link emotion processing in the AMY tomemory

storage in the HPC, mediating the consolidation and retrieval of

emotional memory (Girardeau et al., 2017; Goshen et al., 2011;

Smith et al., 2006). Our findings support an intimate link between

mood and emotional memory, where the encoded signal may

reflect rumination on negative thoughts (Milazzo et al., 2016),

context-dependent anxiety (Felix-Ortiz and Tye, 2014; Felix-

Ortiz et al., 2013), or the recollection of negative experiences

(Fanselow and Dong, 2010). Our findings may also relate to pre-

vious studies that have associated b-frequency activity with

anxious thinking and active concentration (Güntekin and Basxar,
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2010) and, more recently, with depression (Clark et al., 2016).

Computational models of b-frequency oscillations in networks

relevant to Parkinson’s disease have suggested that b-syn-

chrony may reduce network flexibility (Brittain et al., 2014),

potentially promoting the resident negative emotional state or

memory over the formation of a new one.

Although our study did not explicitly study mood in the context

of depression, we did find correlations between IMS score and

the variance of AMY-HPC b-coherence in subjects with BDI

values consistent with both depression and euthymia. This sug-

gests that this AMY-HPC subnetwork may encode mood in both

depressed and non-depressed individuals, although it does not

address whether it plays a causal role in depression. This obser-

vation complements the large body of functional imaging work

that has identified networks of brain regions associated with

depression and antidepressant responses (Drysdale et al.,

2017; Ferenczi et al., 2016; Hultman et al., 2016; 2018; Ressler

and Mayberg, 2007). It will be particularly important for future

studies to explore how the AMY-HPC interaction identified

here may be altered in the setting of major depression and

how this interaction may be regulated by regions such as the

subgenual cingulate that are potential targets for deep brain

stimulation in depression (Mayberg et al., 2005). This may lead

to novel pathophysiological insights, whereas identifying mech-

anisms that can maintain this interaction within an optimal range

may yield novel therapeutic strategies.

It is important to note here that we have looked for a neural

relationship with IMS score as a whole. IMS is based on a range

of questions, some of which might more classically be associ-

ated with DSM (Diagnostic and Statistical Manual of Mental

Disorders) diagnoses of depression or anxiety. However, given

that mood is amultifaceted emotional state, we decided to focus

on this more composite measure here.

Relationship between Seizure Activity and AMY-HPC
Activity
An important potential confounding factor of our study is the

overlap between the mood-related AMY-HPC subnetwork and

brain regions commonly implicated in seizures (refer to Table

S1 for subjects’ seizure foci). This currently represents a limita-

tion of studies based on semi-chronic iEEG recordings, which,

for the most part, are only available from patients with epilepsy.

Nonetheless, iEEG recordings from patients with epilepsy have

led to significant advances in our understanding of human neuro-

physiology (for example, in memory processing) despite the fact

that memory-related networks also overlap with seizure foci

(Burke et al., 2014; Kucewicz et al., 2017; Serruya et al., 2014).

We looked for—and failed to find—a correlation between epilep-

tiform activity and either IMS score or the variance of AMY-HPC

b-coherence that might explain the observed correlation with

mood. An added confounding factor is that patients undergoing

intracranial monitoring for seizure localization often have their

seizure medications tapered and eventually restarted over the

course of their hospitalization, raising the possibility that some

variation inmoodmay not be entirely ‘‘natural’’ but, rather, reflect

medication-related mood changes. Although this would be

interesting, it would not alter our key finding that the biomarker

indicates variations in subjective mood. While we acknowledge
that some mood fluctuations may have been driven by medica-

tion changes, our analysis of a subset of subjects indicated that

starting or stopping anticonvulsants did not generally account

for themood variation we observed. Understanding the temporal

dynamics of medication-related changes in mood and neural

biomarkers represents an important future direction but is

beyond the scope of the current study, particularly because sub-

jects received different combinations of medications. The fact

that we observed a conserved neural biomarker-mood relation-

ship across subjects with diverse medication regimens provides

additional evidence that this relationship is not trivially mediated

by medications.

Although the generalization of our findings to non-epilepsy

populations remains to be determined, studying mood in this

context is valid given the strong comorbidity between epilepsy

and mood and anxiety disorders, in particular depression (Her-

mann et al., 2000). In fact, one of the most effective treatments

for depression is electroconvulsive therapy (ECT), which was

discovered based on observations from individuals with epilepsy

(Faedda et al., 2010) but also has profound relevance for the non-

epilepsy population (Read and Bentall, 2010).

In summary, our large-scale electrical recordings of the human

limbic system have revealed an AMY-HPC subnetwork and a

specific spatiotemporal neural signature that encode a large

portion (�40%–50%) of the variation in mood over time. This

subnetwork is shared across more than 60% of individuals and

is consistently present in individuals with elevated anxiety. Our

findings contribute to a deeper understanding of the neural en-

coding of mood and anxiety and reveal a biomarker that might

be useful for diagnosis and treatment of mood and anxiety disor-

ders, in particular innovative treatments using closed-loop deep

brain stimulation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and analyzed iEEG data This paper N/A

IMS data This paper N/A

Software and Algorithms

Python packages: cohere_pairs, fastICA,

ElasticNetCV

Python libraries: matplotlib, sklearn,

scipy, numpy

https://www.anaconda.com/download/#macos

Pygraphviz package https://pygraphviz.github.io https://github.com/pygraphviz/pygraphviz

Networkx package Schult and Swart, 2008 https://networkx.github.io

Quickspikes package Meliza and Margoliash, 2012 https://github.com/melizalab/quickspikes

Custom code and algorithms This paper N/A

Other

Human participants with treatment-resistant

epilepsy, undergoing surgical treatment at

the UCSF Medical Center

This paper N/A

Intracranial electrodes Ad-Tech subdural strip and SEEG depth

electrodes

https://adtechmedical.com/about-us

Neural recordings and amplifier Natus XLTex EEG clinical recording system

and Quantum LTM amplifier

https://neuro.natus.com/products-services/

natus-quantum-ltm-amplifier
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to andwill be fulfilled by the Lead Contact, Vikaas S. Sohal (vikaas.

sohal@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
21 human subjects (16 male, 5 female, aged 33 ± 10 years) with treatment-resistant epilepsy were surgically implanted with semi-

chronic intracranial electrodes (for sites included in this study: Ad-Tech 4-contact strip or depth, 10mm center-to-center spacing,

2.3mm exposed diameter; Ad-Tech 10-contact depth, 6 or 5mm center-to-center spacing) for the clinical purpose of seizure

localization. All procedures were approved by the University of California, San Francisco Institutional Review Board. All subjects

gave written informed consent to participate in the study before surgery. 12 subjects had left hemisphere implantations, 9 had right

hemisphere implantations. Subjects’ clinical information is provided in Table S1.

Results of the study (i.e., the presence of a mood-predictive AMY–HPC subnetwork) generalized to both sexes. Specifically, the

mood-predictive AMY–HPC subnetwork was present in 4/5 female and 9/16 male subjects. There is not a significant difference

between these proportions (p = 0.61 by Fisher’s exact test), however, additional female subjects would be necessary to examine

possible sex differences more rigorously.

Inclusion criteria
Subjects were included in our study based on the following criteria: (i) AMY electrode implantation (the dominant brain region for

emotion) (ii) minimum coverage of 4 brain regions (to assess large-scale, cross-regional subnetworks) (iii) unilateral electrode implan-

tation, and (iv) minimum of 3 IMS data points. Subjects were included in elastic net regression analysis based on the following criteria:

(i) minimum of 10 IMS data points (ii) minimum IMS coefficient of variance of 5%.

METHOD DETAILS

Neural recordings
Electrophysiological recordings were acquired at a sampling rate of either 512 Hz or 1.02 kHz using the Nicolet Natus (EC77, EC79,

EC80) or Natus XLTex (remaining subjects) EEG clinical recording systems, with either the EEG128FS amplifier and Neuroworks

8.0 software (EC82, EC84) or Quantum amplifier and Neuroworks 8.1 software (EC108–EC136). Recordings were performed
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continuously over a 7–14 day hospitalization period. Electrode coverage varied for each subject, depending on their epileptic pathol-

ogy. To maximize generalizability across subjects, we focused our analysis on depth electrodes located in limbic structures that

were most common across subjects: subtemporal cortex (STC, 4-contact strip in anterior, middle and/or posterior STC), amygdala

(AMY, single 4- or 10- contact depth), hippocampus (HPC, 4- or 10-contact depth in ventral HPC), orbitofrontal cortex (OFC,

4-contact strip in anterior and/or posterior OFC), cingulate cortex (CIN, 4- or 10-contact depth in inferior and/or superior CIN)

and insular cortex (INS, single 4- or 10-contact depth). Electrode locations were confirmed by visual inspection of brain image

reconstructions.

All subjects primarily remained laying down in the hospital bed throughout the duration of their hospitalization, minimizing contam-

ination of the recordings by motor artifacts related to locomotion or ambulation. Moreover, there should be minimal contamination

from eye movement artifacts, as there is evidence that these do not contaminate intracranial EEG from depth electrodes within the

brain parenchyma (Jerbi et al., 2009).

Cortical surface extraction and electrode visualization
Electrodes on each subject’s brain were localized by co-registering the pre-operative T1MRI with a post-operative CT scan contain-

ing the electrode locations, using a normalized mutual information routine in the Statistical Parametric Mapping software SPM12

(Ashburner and Friston, 1997). Pial surface reconstructions were created using Freesurfer (Fischl, 2012). For visualization of electrode

coordinates in MNI-coordinates, a nonlinear surface registration was performed using a spherical sulcal-based alignment in

Freesurfer, aligning to the cvs avg35 in MNI152 template (Fischl et al., 1999). Centroid locations for AMY and HPC electrodes

were computed in MNI coordinate space using the center of mass across all electrodes anatomically verified to be located within

either brain structure.

Psychological testing
Subjects’ psychological state was evaluated up to four times daily during their hospitalization period prompted by a research assis-

tant, using a tablet-based, custom-designed questionnaire called the Immediate Mood Scaler (Nahum et al., 2017) (IMS). This con-

sisted of a set of either 5 (EC84), 23 (EC77, EC79, EC80) or 24 (remaining subjects) questions, in which the subject self-reported their

instantaneous mood on a scale between �3 and +3 (Table S2). The final composite score provided a single value between ± 15

(5-question), ± 69 (23-question) or ± 72 (24-question), representative of the subject’s overall psychological state at that time point.

Higher values correspond to more positive instantaneous mood state. IMS questions were based on the Patient Health

Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), and Rumination scale (Nahum et al., 2017). Subjects were also

administered PHQ-9, GAD-7 and Rumination scale on the first day of their hospitalization period. IMS data points taken within

1.5hr of the previous data point were considered to not be independent and excluded from analysis (12/160 data points total;

inter-IMS-interval across all subjects = 9.2 ± 7.0 hr). When comparing across subjects, IMS scores were first z-scored relative to

a subject’s mean and standard deviation.

In the months prior to hospitalization, subjects were administered the Beck Depression Inventory (BDI) and Beck Anxiety Inventory

(BAI) to assess trait levels of depression and anxiety.

Region of interest abbreviations
Subtemporal cortex (STC), amygdala (AMY), hippocampus (HPC), orbitofrontal cortex (OFC), cingulate cortex (CIN), insular cortex

(INS), anterior (ant, a), middle (mid, m), posterior (pos, p), ventral (ven, v), inferior (inf, i), superior (sup, s).

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing of electrophysiological recordings
Voltage signals from each electrode were band-passed filtered between 0.5–256 Hz and downsampled to 512 Hz using an 8th order

chebyshev type I filter. Signals were notch-filtered at 60, 120, 180 and 240 Hzwith 4 Hz bandwidth using a 5th order butterworth filter,

to reduce line-noise-related artifacts. Signals were then re-referenced to the common average across channels sharing the same

lead. Noise and artifact occurring over several leads, for example, due to disturbances to cables or connectors, was removed

from signals recorded on the Nicolet Natus recording system (EC77, EC79 and EC80) using an Independent Components Analysis

(ICA) approach. Briefly, signals were divided into �1hr time segments and decomposed with ICA using Python’s fastICA algorithm,

which maximizes nongaussianity of prewhitened components using an iterative, fixed-point rotation scheme. This separated the

signals into a combination of artifact and neural independent components (ICs). The artifact components showed large voltage

deflections and were distinguishable from the neural components. A subset of ICs (�10% per dataset, from a total of over 6000

ICs per dataset) were manually labeled as either artifact or neural. We then used the labeled dataset to train a logistic classifier to

distinguish between artifact versus neural ICs based on two features: power spectra and amplitude distribution. ICs identified as

artifact using the classifier were subtracted from the original signals.
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Coherence matrices
Voltage traces from electrodes located in STC, AMY, HPC, OFC, CIN and INS were split into contiguous 10 s segments. Signal

coherence, Cxy (f), is a measure of the normalized cross-spectral density and is given by:

CxyðfÞ=
��GxyðfÞ

�� 2
GxxðfÞGyyðfÞ
where G (f) corresponds to the cross-spectral density between
xy two signals x and y, and Gxx(f) and Gyy(f) correspond to the auto-

spectral densities of x and y, respectively. Signal coherence was calculated between all pairs of electrodes for each 10 s segment

using Python’s cohere_pairs function, which computes power spectral density using Welch’s method with a non-overlapping

Hanning window. We repeated the calculation using phase randomized surrogate signals (i.e., signals with the same power spectra

as the original signals but reconstructed with randomized phases) and subtracted these values from the coherence of the original

signal. This step subtracted out a noise floor resulting from co-variations in amplitude that are not a result of true phase coherence,

which can significantly bias coherence measure (Srinath and Ray, 2014). We constructed 4 time-series of coherence matrices by

averaging across four frequency bands: theta q, [4-8 Hz]; alpha, a [8-13 Hz]; beta, b [13-30 Hz]; and, gamma g [30-70 Hz].

Power spectra
Voltage traces from electrodes located in AMY and HPCwere z-scored relative to the mean and standard deviation of activity across

the entire recording duration, and hence split into contiguous 10 s segments. The power spectral density of each 10 s segment was

calculated using Python’s welch function in the SciPy library, which computes power spectral density using Welch’s method with a

non-overlapping Hanning window. Time series of mean power between 13 and 30 Hz (b-frequency) were obtained for each electrode

and averaged across all electrodes in either AMY or HPC to obtain the mean b-power spectra for either brain region.

Intrinsic coherence networks (ICNs)
ICNs were identified by deriving statistically significant, independent components of coherence matrices. First, principal component

analysis (PCA) was carried out on each set of coherence matrices for dimensionality reduction and orthogonalization. PCA was

performed on eachm3 nmatrixM, with rows corresponding tom electrode-electrode coherence pairs and columns corresponding

to n time points. To obtain an estimate of number of significant components, we used a statistical threshold set by the Marchenko-

Pastur Law, which gives the distribution of eigenvalues expected by chance (Lopes-dos-Santos et al., 2013). Principal components

(PCs) with eigenvalues above theMarchenko-Pastur eigenvalue threshold, lMP, represent statistically significant sources of variation

within the dataset, where:

lMP = s2
�
1+

ffiffiffiffiffiffiffiffi
1=q

p �2
for amatrix of size q = n/m and variance of elements s2. PCs with e
igenvalues greater than lMPwere extracted for each dataset. Next,

independent components analysis (ICA) was carried out on the significant PCs to separate the signal mixtures into independent

sources. We used Python’s fastICA algorithm, which maximizes nongaussianity, measured by the approximation of negentropy,

of prewhitened components using an iterative, fixed-point rotation scheme (Hyvärinen and Oja, 2000). Independent components

(ICs) identified in this manner correspond to subnetworks of brain regions in which coherence tends to fluctuate in a coordinated

manner, that capture significant sources of variation in the dataset, and that are maximally independent from one another at an

instant in time. ICNs were visualized using chord diagrams with electrodes mapped onto nodes. Edges between nodes were found

by thresholding the ICN loading above (/below) the 98th (/2nd) percentile. This threshold was chosen purely for illustrative purposes

and has no bearing on any quantitative analyses or conclusions.

Common network analysis
A common network template was defined to consist of the four most medial electrodes in each of the ten following regions: anterior

STC, middle STC, posterior STC, AMY, HPC, anterior OFC, posterior OFC, inferior CIN, superior CIN, and INS. I.e., if a subject had

electrodes in any of these brain regions, the four most medial electrodes were selected for the common network analysis, while the

remainder were excluded. If a subject did not have electrodes in a given brain region, the corresponding region was left empty (i.e.,

matrix elements corresponding to absent brain regions were set to have a value of zero). These absent electrodes are represented by

hollow nodes in the ICN connectivity diagrams.

A similarity matrix to determine the spatial similarity of all ICN-ICN combinations (across all subjects and all frequency bands) was

constructed by calculating the Pearson correlation coefficient (across electrode space) between each common network-projected

ICN pairs. Network similarity was analyzed and visualized graphically using Python’s networkx (Schult and Swart, 2008) and

pygraphviz packages, in which nodes correspond to ICNs and edges link together similar ICNs. Briefly, an adjacency matrix was

constructed by thresholding the absolute magnitude of the similarity matrix above 0.55. Core nodes were identified as those that

were connected to at least 7 other nodes. We present a justification for this choice of cross-correlation threshold in Figure S3. These

thresholds were chosen to be at a level that winnows the number of connections to yield a sparse graph that is suitable for
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analysis. To avoid all nodes either being retained (red/orange in Figure S3A) or excluded (blue/purple in Figure S3A) requires a cross-

correlation threshold between �0.4-0.6. The green band in Figure S3A corresponds to �40% of nodes being included for analysis,

thus balancing the inclusion/exclusion of nodes and presumably yielding a sparse graph that is appropriate for analysis. Choosing a

cross-correlation threshold of 0.55 and core node threshold of 7 provided an appropriate trade-off between clusters that are highly

overlapping and interconnected (Figure S3C, left) and clusters that start to break off and become independent islands (Figure S3C,

right). Nonetheless, even though the topological graph structure changed as these thresholds are varied, the same overall clique

structure was largely preserved over this range of thresholds (Figure S3C). Cliques of core nodes were identified by finding 5-clique

clusters of nodes, in which each ICN node was connected to each other ICN node in that clique. To compare clique structure to

random structure, we constructed a randomly shuffled adjacency matrix.

Regression analysis
We used an elastic net approach (Zou and Hastie, 2005) to identify linear models that predict IMS score based on activity within

multiple ICNs. This is a regularized linear regression model that determines the coefficients, b, which map a feature vector X onto

observations y, by minimizing the following loss function:

bb = argmin y � Xbj j2 + l2 bj j2 + l1 bj j
� �
where, l1 and l2 are L1 and L2 regularization parameters, respectiv
ely. In this study, y corresponds to IMS score and X corresponds to

a representation of ICN activity. The latter was determined by first projecting the time series of coherence matrices onto each ICN,

separately for each frequency band and subject. The variance of the projection was then measured using a 1-minute sliding window,

in order to capture transient peaks observed in the temporal structure of ICN projections. Feature vectors X were then constructed

using all frequency band ICNs for each subject, by taking the mean ICN projection variance over a given time window around each

IMS time point in vector y. An elastic net model was fit using Python’s ElasticNetCV class in the scikit-learn library. The best model

(the ratio of regularization parameters l1 and l2 thatminimizes the loss function) was selected using 3-fold cross-validation. A learning

rate of a = 0.1 was used. After testing 6 different time windows (5, 10, 15, 20, 25, or 30 min), we found that only when we used a time

window of 20min did the elastic net yield amodel that could predict IMS (i.e., non-zeroR2 regression score) in all 6 subjects for whom

we performed this analysis. Importantly, we did not choose the time window separately for each subject based on the ‘best’ analysis

results (e.g., highest R2). Rather, we selected a single time window that yields a non-zero R2 for all subjects. Furthermore, the choice

of this time window is completely agnostic to the details of the model, i.e., which networks are used to predict mood. Thus the tem-

poral window optimization does not increase the likelihood of observing convergence onto a specific mood-predictive network

across subjects. As a result no correction for multiple comparisons is warranted. In other words, even though different windows

may have been optimal (i.e., yielding higherR2) for individual subjects, this 20-minute timewindowwas optimal at the population level

and used for all subsequent analyses. R2 regression scores were compared to those from models fit to randomly shuffled ICN time

series, computed using Python’s random.shuffle function on ICN projections, and repeated 100 times for each subject.

Clique-convergence probability
We estimated the probability that 6/6 subjects would have the most IMS-predictive ICN in a single ICN clique, with 5/6 of these in the

same frequency band by summing over all 9 cliques, c, and all 4 frequency bands, f, as follows:

pz
X
c

X
f

C6
6

�
nc

ntot

�6

C6
5

�
nc;f

nc

�5
where n is the total number of ICNs for the 6 subjects, n is the
tot c number of ICNs for the 6 subjects in clique c, nc,f is the number of

ICNs for the 6 subjects in clique c frequency band f, and cnk corresponds to the binomial coefficient for choosing k elements from a set

of n elements.

Interictal activity analysis
The iEEG recordings in this study consist of large-scale, semi-chronic recordings (�40-70 electrodes recorded continuously over the

course of �7-10 days). Due to the large scale of these recordings, rather than excluding electrodes or epochs with epileptiform ac-

tivity, we opted to retain all data and to perform the appropriate post hoc analyses to control for possible mood effects of interictal

activity. iEEG signals on AMY and HPC electrodes were extracted in the 20-minutes around each IMS score time point and normal-

ized by z-score. Interictal discharges were identified as transient spikes that crossed a threshold of �4 standard deviations from the

mean, going away from zero, using Python’s quickspikes package (Meliza and Margoliash, 2012). Discharge rate was estimated by

calculating the number of spikes per unit time.

Medication analysis
Potential effects of anti-epileptic drugs (AEDs) on neural activity and mood were assessed in the three subjects with the strongest

mood-subnetwork relationship: EC79, EC82 and EC108. EC79 received levetiracetam (LEV) for 4/6 days at 3000mg/day, and was
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off AEDs for 2/6 days; EC82 was off AEDs for 6/6 days; EC108 received LEV for 5/5 days at 2000mg/day. Medication was adminis-

tered twice daily at 9AM and 9PM. The mean temporal variance of AMY–HPC b-coherence and mean IMS score were calculated

over each 4-hour period followingmedication administration (or equivalent 4-hour periodswhen subjects did not receivemedication).

The mean temporal variance values were z-scored within each subject, and the mean IMS score was z-scored based on the full

distribution of IMS points for each subject.

DATA AND SOFTWARE AVAILABILITY

Data availability
Data used to generate the findings of this study will be freely available upon request (subject to participant consent) to the Lead

Contact.

Code availability
Custom computer code used to generate the findings of this study will be made available upon request to the Lead Contact.
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Supplemental Figures

STC: subtemporal cortex
AMY: amygdala
HPC: hippocampus
OFC: orbitofrontal cortex
CIN: cingulate cortex
INS: insula
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B
AMY and HPC electrode centroids (MNI coordinates) 

Figure S1. Electrode Locations, Related to Figure 1

(A) Sagittal views of electrode locations for each individual subject in native coordinates. STC: subtemporal cortex (blue); AMY: amygdala (magenta); HPC:

hippocampus (orange); OFC: orbitofrontal cortex (purple); CIN: cingulate cortex (red); INS: insular cortex (yellow).

(B) Sagittal view of the centroid locations of AMY (magenta) and HPC (orange) electrodes superimposed onto reconstructed brain in MNI coordinate space for

subjects with and without b-AH ICN. The overlapping centroids within each brain region for each group indicate that no marked differences in electrode locations

between these two groups exists.
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Figure S2. Determination of Adjacency Matrix for Topological ICN Graph, Related to Figure 2

(A) Example ICNs from two subjects (EC108 and EC113) showing all electrodes (left) and projection onto ‘‘common network template’’ (right) consisting of the four

most medial electrodes in each of the defined regions. Connectivity diagrams as in Figure 1D. Electrodes in subjects with no implantation in a given brain region

are represented as hollow nodes.

(B) Similarity matrix of Pearson correlation coefficient between all common network-projected ICNs for EC108 and EC113 before (left) and after (middle) applying

a threshold of 0.55. Correlation coefficient of two ICNs depicted in (A) is highlighted by red box. Right: adjacency matrix (binarized representation of thresholded

similarity matrix) used for construction of topological ICN graph (Figure 2).
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Figure S3. Clique Structure Is Preserved for Different Threshold Values, Related to Figure 2

(A) Fraction of ‘‘core ICNs’’ (#core ICNs/#all ICNs) over range of cross-correlation and core node connectivity thresholds.

(B) Left: Proportion of ICNs per clique (#ICNs in clique x/#core ICNs, where x = 1–9) for topological ICN graph in Figure 2 (cross-correlation threshold = 0.55, core

node connectivity threshold = 7, clique connectivity threshold = 5). Right: Corresponding chord diagrams of average spatial connectivity patterns of all ICNs

represented in a given clique (as in Figure 1D).

(C) Topological graphs (as in Figure 2) for two different combinations of threshold values: cross-correlation threshold = 0.5 and core node connectivity

threshold = 8 (left); cross-correlation threshold = 0.6 and core node connectivity threshold = 6 (right). Nodes are color-coded according to clique assignment as

in (B); white nodes correspond to unassigned ICNs.

(D) Topological graph for randomly-shuffled similarity matrix (cross-correlation threshold = 0.55 and core node connectivity threshold = 7).

(E) Topological graphs (as in Figure 2) with ICN nodes color-coded by frequency band (left) and subject (right).
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Figure S4. IMS Scores across Subjects, Related to Figure 3

(A) IMS scores for each subject, color-coded by presence (black) or absence (red) of mood-related b-AH ICN. IMS score range depends on total number of

questions in IMS-questionnaire: 23-questions (EC77, EC79, EC80), 5-questions (EC84), or 24-questions (rest).

(B) Mean IMS score versus PHQ-9 (left), GAD-7 (middle) or Rumination (right) scores for subjects with (black) or without (red) mood-related b-AH ICN.

(legend continued on next page)



(C) Mean IMS score versus BDI (left) or BAI (right) scores for subjects with (black) or without (red) mood-related b-AH ICN.

IMS: immediate mood scaler; PHQ-9: Patient-Health Questionnaire-9; GAD-7: Generalized Anxiety Disorder-7; BDI: Beck Depression Inventory; BAI: Beck

Anxiety Inventory.

(D) Elastic net model coefficients for 15-, 20- and 25-minute averaging windows for two example subjects (EC79 and EC80). The model coefficients are very

similar over all three averagingwindows for EC79, and over 15- and 20-minute windows for EC80. This illustrates that themodel output is robust against a range of

window parameters.
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Figure S5. The Same Activity-Mood Relationship Holds across All Subjects with a b-AH ICN, Related to Figure 5
Left: regression of IMS score against temporal variance of AMY–HPC b-coherence over 20-minute averaging window centered around each IMS score time point

and z-score normalized within each individual for the 7 subjects with the b-AH ICN who were not used in the elastic net analysis. Grey confidence interval

represents 95% confidence on regression estimate. A linear model was fit to these data and used for mood predictions for remaining subjects. Center/right: IMS

score predictions using linear model for 6 subjects used in elastic net analysis and with b-AH ICN (center), and 8 subjects not used in elastic net analysis and

without b-AH ICN (right). R2 regression scores describe how well the model fits the data, where a negative score corresponds to a worse prediction than a

horizontal line. p-values assess significance using 106-fold permutation test for residuals against the line y = x (dashed line).
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Figure S6. Activity within AMY or HPC Alone Does Not Correlate with IMS Score across Subjects, Related to Figure 6

(A) Heatmaps of regression p-value between IMS score and temporal variance of AMY–HPC coherence in q, a, b or g frequency bands, across range of averaging

windows, tave, and start times from each IMS data point, Dt (as in Figure 6B).

(B) Left: Regression of IMS score against mean AMY–AMY b-coherence (upper) and HPC-HPC b-coherence (lower) over 20-minute averaging window centered

around each IMS score time point and z-score normalized within each individual, for 13/21 subjects with b-AH ICN (color-coded as in Figure 6A). Right: heatmap

of regression p values across range of averaging windows, tave, and start times from each IMS data point,Dt (as in Figure 6B). Regression plots on left correspond

to tave = 20 min and Dt = �10 min.

(C) Regression and heatmaps (as in (B)) for mean AMY b-power (upper) and HPC b-power (lower).
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Figure S7. Interictal Discharge Rate Does Not Correlate with IMS Score across Subjects, Related to Figure 6

(A) Examples of interictal discharges (red dots) detected from AMY electrodes in two example subjects.

(B-D) IMS score (B), b-coherence variance (C), and b-coherence mean (D) versus interictal discharge rates in AMY (left) and HPC (right) electrodes, using

20-minute averaging window centered around each IMS data point for 13/21 subjects with b-AH ICN (color-coded as in Figure 6A).

(E) IMS score versus b-coherence variance (left) or b-coherence mean (right) after correcting for relationship with AMY discharge rate (color-coded as in

Figure 6A).

(F) The mean temporal variance of b-coherence (left) and mean IMS score (right) during each 4-hour period following administration of the anti-epileptic drug

levetiracetam (LEV), or during equivalent periods when no medication was received. Data are shown for three subjects, one who consistently received LEV

(EC108, 5 days on medication, green), one who received LEV on some days (EC79, 4 days on and 2 days off medication, black), and one who did not receive any

anti-epileptic medication (EC82, 6 days off medication, red).
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