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Abstract: The human body is a superorganism in
which thousands of microbial genomes continually
interact with the human genome. A range of physi-
cal and neurological inflammatory diseases are now
associated with shifts in microbiome composition.
Seemingly disparate inflammatory conditions may
arise from similar disruption of microbiome home-
ostasis. Intracellular pathogens long associated with
inflammatory disease are able to slow the innate
immune response by dysregulating activity of the
VDR nuclear receptor. This facilitates the ability of
other species to gradually accumulate in tissue and
blood, where they generate proteins and metabolites
that significantly interfere with the body’s metabol-
ic processes. The microbes that contribute to this
dysfunction are often inherited from family mem-
bers. Immunosuppressive therapies for inflammato-
ry disease allow pathogens driving these processes to
spread with greater ease. In contrast to immunosup-
pression, treatments that stimulate the immune sys-
tem seem to allow for reversal of this pathogen-
induced genomic dysregulation. [Discovery Medicine
17(95):n-n, May 2014]

Introduction

Over just the past decade, molecular tools have revolu-
tionized the field of microbiology. These tools -- which
include pyrosequencing, single cell sampling, and shot-
gun sequencing -- directly extract and clone DNA from
communities of microorganisms in the human body. We
can subsequently characterize microbes based on their
genomic signatures rather than their appearance in a
Petri dish.

Indeed, it is now understood that the vast majority of

microbes capable of persisting in Homo sapiens cannot
be cultured in a laboratory. In contrast, studies using
these new molecular tools have revealed the presence of
thousands of previously unknown microbes in human
tissue and blood (Pagani et al., 2012). These microbes
persist both in and on the human body, and are collec-
tively referred to as the human microbiome.

Many of these newly characterized microbes have the
capacity to contribute to human disease processes. For
example, the amniotic fluid is widely regarded as being
sterile. However, in 2010, DiGiulio and Relman and
their colleagues at Stanford University published a sem-
inal study that used molecular methods to identify
eighteen different bacterial taxa in the amniotic fluid of
women during preterm labor (DiGiulio et al., 2008). A
number of bacterial species identified were previously
uncultivated and uncharacterized. The positive predic-
tive value of PCR (polymerase chain reaction) for
preterm delivery was 100%.

Discoveries like Relman’s allow us to study chronic
inflammatory disease from a new perspective. The the-
ory of autoimmunity -- in which the immune system is
thought to lose tolerance and generate antibodies
against self -- gained traction before molecular-based
technologies existed. The human body was logically
assumed to be largely sterile. It followed that inflamma-
tory conditions associated with autoantibodies could
simply not be tied to infectious processes.

Today however, armed with a growing understanding of
the diversity and extent of the human microbiome, we
can re-evaluate many of these processes. Much of the
inflammation and systemic dysfunction observed
among patients with autoimmune and inflammatory
disease can now be traced to components of the micro-
biome, and to the genetic pathways that pathogens
within the microbiome dysregulate in order to survive.

The Human Superorganism

Two recent large-scale collaborations spearheaded the
use of these metagenomic technologies. One was the
Human Microbiome Project (2008-2012), a U.S.-based
initiative funded by the U.S. National Institutes of
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Health (Turnbaugh et al., 2007). The Project generated
over 3.5 terabases of metagenomic sequences (Methé et
al., 2012). Another initiative was MetaHIT, a Europe-
based initiative (2008-2012), which focused primarily
on better characterizing the gut microbiome (Ehrlich,
2011).

In conjunction with data generated by other private ini-
tiatives, these projects detected and characterized so
many novel microbes in Homo sapiens that at least 90%
of cells in the human body are now understood to be
bacterial, fungal, or otherwise non-human in origin. As
of March 2014, the Genomes Online database lists
2,723 completed and published bacterial genomes
detected in the human body with at least 14,867 in
progress (Pagani et al., 2012).

Our knowledge of the chronic viruses that persist in
Homo sapiens is also rapidly evolving. Gordon and col-
leagues analyzed the fecal virome of monozygotic
twins and their mothers (Reyes et al., 2010). Eighty one
percent of the reads generated from this virome did not
match those of any known viruses. In 2011, Pride et al.
(2012) found that hundreds of previously uncharacter-
ized bacteriophage species dominate the oral cavity,
some of them serving as reservoirs for pathogenic gene
function.

The over nine million non-human genes represented by
the microbiome (Yang et al., 2009) dwarf the meager
20,500 that comprise the human genome. This knowl-
edge implies a redefinition of the human/microbe rela-
tionship. The human body is best understood as a super-
organism whose metabolism represents a combination
of microbial and human interaction.

While pathogens clearly persist on mucosal surfaces,
they are also present in blood and tissue. A microbiome
is now known to persist in the lungs (Erb-Downward et
al., 2011). Microbial RNA can be easily detected in
healthy human blood (McLaughlin et al., 2002), with
pathogens such as Helicobacter pylori identified by
routine testing (AL-Jobori et al., 2011). Polybacterial
and chronic pathogens have been detected in athero-
sclerotic plaque. These include active species such as
Porphyromonas gingivalis (Kozarov et al., 2005).

The Interactome

The millions of proteins and metabolites expressed by
these and other microbes continually interact with those
expressed by our own human genomes. The resulting
interactions between these foreign and host proteins --
the interactome -- significantly impact all of the body’s
metabolic pathways. For example, the HIV genome

transcribes 19 proteins, yet there are 1,443 direct inter-
actions between just these few proteins and the human
genome (Fu et al., 2009).

The expression of our human genes is continually mod-
ified by the microbes and their metabolic products. For
example, the gene PTPN22 has been connected to
rheumatoid arthritis, lupus, and diabetes mellitus (Goh
et al., 2007). However, PTPN22 expression is also
altered by the bacterial metagenome -- it is upregulated
as part of the innate immune response to mycobacteria
(Lykouras et al., 2008).

Molecular Mimicry Further Complicates the
Interactome

These genomic interactions are complicated by the fact
that the structures of many nucleic acids and microbial
proteins are identical or very similar to those expressed
by those of their human hosts. For example, humans
and E. coli metabolize glucose in nearly the same fash-
ion, so the human superorganism may have difficulty
distinguishing proteins and metabolites created by the
microbes from those recognized as “self.”

Tens of thousands of protein-protein interactions have
been documented between just the genomes of
Salmonella, Escherichia coli, Yersinia, and the human
genome (Krishnadev and Srinivasan, 2011).

Composition of the Body’s Microbial Communities
Often Changes in Disease

Microbiome composition is often altered in patients
with chronic inflammatory conditions. This dysbiosis,
or microbial imbalance, has been associated with a
growing number of chronic diagnoses including
Crohn’s disease, ulcerative colitis (Morgan et al.,
2012), irritable bowel syndrome (Franceschi et al.,
2009), psoriasis, both type 1 (Giongo et al., 2010) and
type 2 diabetes (Larsen et al., 2010), and cardiovascu-
lar disease (Rajendhran et al., 2013).

Some studies demonstrate direct relationships between
microbial composition and disease onset. Amar et al.
(2011) found that in 3,280 subjects without diabetes or
obesity at baseline, pathogens in the microbiome led to
16S rDNA blood serum concentrations significantly
elevated in those who went on to develop diabetes.

It is becoming increasingly clear that inflammatory dis-
ease processes are not due to acquisition of any single
pathogen. Instead, they appear to result from alterations
in the complex microbial communities. It follows that
Koch’s postulates, which dictate that one microbe must

Discovery Medicine, Volume 17, Number 95, May 2014

Inflammatory Disease and the Human Microbiome



n

Discovery Medicine, Volume 17, Number 95, May 2014

Inflammatory Disease and the Human Microbiome

be proven causative of a single disease state, can no
longer be supported in the era of the metagenome.

Pathogens Capable of Intracellular Persistence Can
Cause Significant Dysregulation

Many of the pathogens that contribute to chronic
inflammatory disease persist inside the nucleated cells.
When macrophages internalize Salmonella, persister
cells can form that are resistant to most antibiotic ther-
apies (Helaine et al., 2014). When E. coli encounters a
macrophage, it can evolve in a manner that allows it to
remain alive within the phagosome (Miskinyte et al.,
2013).

These intracellular pathogens directly interfere with
transcription, translation, and DNA repair at the cellular
level. For example, Xu et al. (2003) demonstrated that
upon infecting a cell, Mycobacterium tuberculosis
alters the expression of 463 human genes. This kind of
interference results in severe dysregulation of the inter-
actome.

Dysregulation of the VDR Nuclear Receptor Leads
to Dysbiosis and Chronic Disease

The ability of several prominent intracellular pathogens
to dysregulate the Vitamin D Nuclear Receptor (VDR)
points to a pathway in the molecular biology by which
they can drive the systemic dysregulation associated
with inflammatory disease.

The VDR expresses at least 913 genes, many connect-
ed to autoimmune and inflammatory processes (Wang
et al., 2005). In addition, it lies at the heart of the innate
immune response. The receptor expresses TLR2, which
recognizes bacterial polysaccharides. It also regulates
expression of the cathelicidin and beta-defensin antimi-
crobial peptides, which play vital roles in targeting
intracellular pathogens (Auvynet and Rosenstein,
2009). For example, vitamin D-mediated human
antimicrobial activity against M. tuberculosis is
dependent on the induction of cathelicidin (Liu et al.,
2007).

Any microbe capable of dysregulating VDR activity
significantly impairs the innate immune response,
allowing the pathogen to persist with greater ease.
Infection of human B lymphocytes with Epstein-Barr
virus downregulates VDR activity by a factor of at least
fifteen -- particularly in younger, longer-lasting lym-
phoblastoid cells (Yenamandra et al., 2009). Persistent
M. tuberculosis slows VDR activity (Xu et al., 2003).
Borrelia burgdorferi (Salazar et al., 2009),
Cytomegalovirus (Chan et al., 2008), and

Mycobacterium leprae (Liu et al., 2012) also slow VDR
activity to varying degrees. The fungus Aspergillus
fumigatus secretes a gliotoxin which significantly
downregulates VDR expression (Coughlan et al.,
2012). Disabling the innate immune system via the
VDR pathway is an extremely logical pathogen survival
mechanism. Thus, other undetected or uncharacterized
microbes likely survive in the same or similar fashion.

Flow on Effects of VDR Dysregulation Further
Slow Immune Activity

VDR dysregulation is characterized by rising levels of
the active vitamin D metabolite 1,25-dihydroxyvitamin
D (1,25-D) and lower levels of the inactive 25-hydrox-
yvitamin D (Blaney et al., 2009). Our in silico data sug-
gests that, when elevated, 1,25-D can interfere with
expression of other nuclear receptors, including the
androgen receptor, the glucocorticoid receptor, and the
thyroid receptor (Proal et al., 2009).

Each of these other nuclear receptors express addition-
al families of antimicrobial peptides (Brahmachary et
al., 2006), which can also be compromised by this same
VDR dysregulation. This leads to profound immuno-
suppression. Indeed, decreased expression of catheli-
cidin over time has been demonstrated in both Crohn’s
disease (Nuding et al., 2007) and sarcoidosis (Barna et
al., 2012).

Successive Infection

Under these conditions, an individual’s microbiome
may shift towards a composition that promotes disease.
We refer to this process, in which the host microbiome
shifts gradually away from a homeostatic state, as suc-
cessive infection (Proal et al., 2010). Infected cells
struggle to correctly produce human metabolites in the
presence of the pathogenic proteins, enzymes, and
metabolites. Any pathogen that decreases antimicrobial
peptide expression facilitates the ability of yet other
pathogens to persist and cumulatively slow innate
immune activity. This creates a snowball effect, where
it becomes progressively easier for the host to acquire
pathogens as the strength of the innate immune
response decreases. Since the immune system strives to
target the persistent microbes but never fully succeeds,
a stalemate results, and low-grade inflammation accu-
mulates.

Eventually, a person undergoing successive infection
may present with symptoms sufficient for an inflamma-
tory diagnosis. The unique symptoms any one person
develops vary depending on the location, species, and
virulence of the pathogens they have acquired over
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time, along with the myriad ways in which the proteins
and metabolites created by these microbes cause dys-
function by interacting with those of the host.

Microbes are notoriously competitive. Some pathogens
successfully outcompete larger populations of less
aggressive microbes. Serious dysfunction occurs if key-
stone species are lost (Cho and Blaser, 2012). Further,
the dominance of certain microbial species may
increase or decrease depending on the state of the inter-
actome. For example, the guts of infants with atopic
eczema are characterized by decreased microbial diver-

sity (Abrahamsson et al., 2012). However, in bacterial
vaginosis, vaginal microbiome composition becomes
much more diverse and taxon-rich than that of healthy
individuals (Oakley et al., 2008).

Comorbidities

Patients with one inflammatory diagnosis frequently
develop another. For example, composition of the lung
microbiome can predict the onset of rheumatoid arthri-
tis (Demoruelle et al., 2014). Figure 1 demonstrates the
overlap in disease presentation among patients with a
broad range of inflammatory conditions.

Figure 1. Comorbidities among common inflammatory diseases. Each “spoke” of this wheel represents a published
study appearing in MEDLINE, which shows a significant statistical relationship between one disease and another.
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Comorbidities directly reflect the successive infectious
process, in which different inflammatory conditions
may be driven by the same underlying mechanisms.
Consequently, seemingly disparate conditions are best
studied concurrently. The line between cause and effect
is frequently unclear. For example, obesity is often
believed to cause diabetes. Yet both conditions have
now been tied to changes in microbiome composition
(Larsen et al., 2010; Turnbaugh et al., 2006) and obesi-
ty itself has been declared a disease.

The microbiome is also involved in neurological condi-
tions including anxiety, depression, and obsessive com-
pulsive disorder (Gonzalez et al., 2011). Thus, succes-
sive infection may also contribute to the development
of neurological disease. For example, the PRIME study
found that in healthy, European, middle-aged men,
baseline depressive symptoms were associated with an
increased risk of coronary heart disease in the short-
term, and with stroke over the long-term (Majed et al.,
2012).

Familial Aggregation

An understanding of the comorbid conditions makes it
easier to recognize familial aggregation. For instance,
Benros et al. (2014) found that patients with schizo-
phrenia are more likely to develop an autoimmune dis-
ease.

Familial aggregation likely results when elements of
the microbiome are inherited. For example, infected
siblings, mothers, and fathers are all major sources for
H. pylori acquisition among young children, with the
infected mother serving as the main source for child-
hood (Weyermann et al., 2009). Relman and colleagues
have demonstrated that within just weeks of birth,
infants develop a microbiome that reflects components
of not just their parents’ microbiomes but those of their
extended families as well (Costello et al., 2013).

Evidence that pathogens are passed down the maternal
line is particularly strong. Breast milk delivers a micro-
biome that varies between women depending on a host
of factors (Cabrera-Rubio et al., 2012). The health of
the mother also appears to directly impact composition
of her milk microbiome. These authors also found that
milk from obese mothers tended to contain a different
and less diverse bacterial community than that obtained
from normal weight mothers.

Autoantibodies

Autoantibodies can be generated in response to
microbes. High titers of rheumatoid factor (RF) have

been detected not only in patients with rheumatoid
arthritis, but also in patients with a number of bacteri-
al, viral, and parasitic infections (Russell et al., 1992).

Autoantibodies are notoriously polyspecific -- antibod-
ies created to target pathogens may additionally target
human proteins. This results in “collateral damage” and
inflammation. For example, Sutjita et al. (1988) found
that when normal individuals were injected with
tetanus toxoid, at least seven antibodies were produced.
One was an autoantibody to cardiolipin. B cells infect-
ed with EBV secrete antibodies capable of reacting
with dozens of self and non-self antigens including
albumin, renin, and thyroglobulin (Seigneurin et al.,
1988).

This means that the “autoantibodies” often detected in
patients with inflammatory disease may simply be anti-
bodies generated from the accumulation of pathogens
into the microbiome. “Autoantibodies” are frequently
detected in patients months or years before the onset of
clinical disease symptoms. This reflects the gradual
increase in microbiome dysbiosis characteristic of suc-
cessive infection.

Immunosuppression Contributes to Prolongation
of Disease by Delaying Resolution

Immunosuppresive therapies represent the standard of
care for most inflammatory conditions, particularly
those considered to be autoimmune. Corticosteroids,
TNF-alpha antagonists, and rituximab are among the
many treatments routinely used to slow immune activ-
ity. These treatments often provide short-term symptom
palliation, but have poor long-term track records when
it comes to relapse and stability. No definitive studies
have demonstrated that corticosteroids improve long-
term prognosis or reduce mortality. Indeed, the oppo-
site is true (Gottlieb et al., 1997).

This pattern is already recognized in the context of
acute infection. For example, Earn et al. (2014) recent-
ly concluded that using antipyretic medications to sup-
press fever (and subsequently the immune response) in
patients with influenza allowed viral particles to spread
more easily between people. Thus, while subjects tak-
ing the antipyretic medications felt fewer symptoms,
they were actually more contagious.

As the concept of “autoimmunity” is re-evaluated in
light of chronic infection, the utility of immunosup-
pression must be reconsidered. Temporary symptom
relief among patients taking immunosuppressive med-
ications may result because the immune system cannot
adequately respond to pathogenic insult. Cytokine and
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chemokine levels may decrease, yet this allows
pathogens to proliferate more easily.

The secosteroid vitamin D has potent immunosuppres-
sive properties (Kimball et al., 2011). Benefits observed
among patients ingesting the substance may subse-
quently result from the short-term palliative effect
described above. Indeed, a number of recent random-
ized controlled trials have studied the effect of vitamin
D supplementation in patients with chronic inflammato-
ry conditions. Most have failed to support a link
between supplementation and improved health. In some
cases, harm has been reported (Albert et al., 2009;
Autier et al., 2014).

Immunostimulation May Better Target the
Inflammatory Disease Process

If slowing the immune response in patients with inflam-
matory disease allows infectious agents to proliferate
more easily, then approaches that seek to stimulate
immune defenses should result in the opposite outcome.
A reinvigorated immune system could more effectively
kill pathogens at the heart of the inflammatory disease
process.

Yet if the immune system successfully targets
pathogens, some elements of the response -- the
cytokine storm, for instance -- may cause the host to
experience discomfort or an increase in disease symp-
toms. This is because as chronic pathogens and the cells
they once inhabited are killed, toxins, cytokines,
chemokines, and debris are released into the blood-

stream. This leads to temporary increases in signs and
symptoms of disease, and in many cases, temporary
fluctuations in the levels of inflammatory disease mark-
ers. This phenomenon is called immunopathology
(Figure 2).

Over the past decade, in concert with our clinical col-
laborators, we have developed an immunostimulative
therapy that has been used to treat patients with a wide
range of chronic inflammatory conditions. The treat-
ment centers on use of a putative VDR agonist, with the
goal of reactivating the antimicrobial peptides and other
components of innate immunity under VDR control.
Although the treatment is in early stages, physicians
have started to publish case histories that seem to
demonstrate both objective and subjective improvement
amongst their patients (Proal et al., 2011; 2013).

Patients using the therapy report high levels of
immunopathology, especially during earlier periods of
treatment. Yet over time, this immunopathology tends to
wane at the same time that symptom improvement is
frequently noted (Proal et al., 2011). This pattern
strongly suggests that patients on the therapy are indeed
targeting pathogens associated with their disease states.

Discussion

The human body is a superorganism in which the
human genome continually interacts with the millions
of microbial genes from the microbiome. Pathogens
have now been identified in tissue and blood previous-
ly considered sterile. Those capable of persisting inside

Figure 2. Immunopathology is a cascade of reactions including inflammation, cytokine release, and endotoxin release
that occur as part of the immune response against microbes (From Ruslan Medzhitov, La Jolla Immunology Conference,
October 2011).
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the nucleated cells can directly alter cellular transcrip-
tion, translation, and DNA repair mechanisms.
Dysregulation of VDR nuclear receptor activity by a
number of prominent pathogens can slow innate
immune activity to the point where microbiome compo-
sition shifts away from a state of homeostasis. Under
these conditions, a person may develop an inflammato-
ry disease, the nature of which varies depending upon
many factors. These include the location and virulence
of the pathogens they acquire and the semi-infinite
number of ways in which the proteins and metabolites
created by these pathogens can cause dysfunction by
dysregulating the body’s metabolic pathways.

The comorbidities so frequently observed among
patients with a wide range of both physical and neuro-
logical conditions support the possibility that different
inflammatory conditions may develop from common
underlying mechanisms. Babies begin to harbor a
microbiome just weeks after birth, the composition of
which reflects the microbiome of their parents and even
those of extended relatives. Thus, the familial aggrega-
tion characteristic of inflammatory disease may well
result when components of the microbiome are inherit-
ed.

The theory of autoimmunity was developed at a time
when the human body was believed to be largely ster-
ile. However, as the thousands of species within the
microbiome are increasingly characterized, it is more
likely that the autoantibodies detected in patients with
autoimmune disease are generated in response to
pathogens rather than “self.”

Immunosuppressive therapies for inflammatory disease
may provide short-term relief by slowing the cytokine
and chemokine release associated with a healthy
immune response towards acquired pathogens.
However, pathogens are able to spread with much
greater ease over the long term, leading to relapse and
instability. Indeed, during the period that immunosup-
pressive therapies have become the standard of care in
the United States, the incidence of nearly every chronic
disease has increased. The secosteroid vitamin D has
immunosuppressive properties, and should subsequent-
ly be evaluated in this context.

It is urgent that we re-evaluate the long-term efficacy of
immunosuppressive therapies. In lieu of slowing the
innate immune response in patients with inflammatory
disease, it seems we should seek to activate it, so that
chronic pathogens might be successfully targeted.
However, patients on an immunostimulative therapy
will inevitably experience immunopathology as toxins
and debris generated from microbial death enter the

bloodstream. While the resulting symptoms may be dif-
ficult to manage, the root cause of the disease is being
addressed.

There is a pressing need for researchers to focus on
developing tests that might better characterize and
measure immunopathology in a clinical setting.
Additionally, the current standard of care prioritizes
symptom palliation. This means that physicians have
few guidelines with which to evaluate the symptom and
metabolite fluctuations characteristic of immunopathol-
ogy. Development of techniques that might help
patients better manage the reaction must also become a
priority.
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